Approaches to nanostructure control and functionalizations of polymer@silica hybrid nanograss generated by biomimetic silica mineralization on a self-assembled polyamine layer
نویسندگان
چکیده
We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI) layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and the aggregation/orientation of the nanoribbons in the film were facile to tune by simple adjustment of the biomimetic silicification conditions and LPEI self-assembly on the substrate. Our LPEI-mediated nanograss process allows the facile and programmable generation of a wide range of nanostructures and surface morphologies without the need for complex molecular design or tedious techniques. This ribbon-based nanograss has characteristics of a LPEI@silica hybrid structure, suggesting that LPEI, as a polymeric secondary amine, is available for subsequent chemical reaction. This feature was exploited to functionalize the nanograss film with three representative species, namely porphyrin, Au nanoparticles and titania. Of particular note, the novel silica@titania composite nanograss surface demonstrated the ability to convert its wetting behavior between the extreme states (superhydrophobic-superhydrophilic) by surface hydrophobic treatment and UV irradiation. The anatase titania component in the nanograss film acts as a highly efficient photocatalyst for the decomposition of the low-surface-energy organic components attached to the nanosurface. The ease with which the nanostructure can be controlled and facilely functionalized makes our nanograss potentially important for device-based application in microfluidic, microreactor and biomedical fields.
منابع مشابه
Nanostructured Palladium-Doped Silica Membrane Layer Synthesis for Hydrogen Separation: Effect of Activated Sublayers
Palladium doped silica membranes were synthesized by the sol-gel method using two different procedures. The first palladium-doped silica membrane (M1) was synthesized with a coating of four layers of silica-palladium sol. The second membrane (M2) was synthesized with a coating of two silica layers followed by a coating of two silica-palladium layers. Scanning electron microscopy (SEM) proved th...
متن کاملConstructing Biopolymer-Inorganic Nanocomposite through a Biomimetic Mineralization Process for Enzyme Immobilization
Inspired by biosilicification, biomimetic polymer-silica nanocomposite has aroused a lot of interest from the viewpoints of both scientific research and technological applications. In this study, a novel dual functional polymer, NH₂-Alginate, is synthesized through an oxidation-amination-reduction process. The "catalysis function" ensures the as-prepared NH₂-Alginate inducing biomimetic mineral...
متن کاملRapid synthesis of polymer-silica hybrid nanofibers by biomimetic mineralization
Biomimetic formation of silica from polyamines such as poly(ethylene imine) (PEI), inspired by the proteins found in diatoms and sponges, has been actively investigated recently as a potential route to silica formation compared to the conventional sol–gel process. We report silica formation onto nanofibers of PEI blended with poly(vinyl pyrrolidone) (PVP) obtained via electrospinning of their 5...
متن کاملIn vitro Investigation of Polymer Coated Magnesium Incorporated by Mesoporous Silica Nanocontainers
The idea of smart corrosion inhibition is basis on either inhibitor consumption where it is needed or reducing harmful matrix interaction with it. In addition, applying corrosion inhibitor in a coating causes many problems such as loss of inhibition capability, coating degradation, or both. A useful technique to overcome this problem is applying of inert host systems of nanometer dimensions as ...
متن کاملBio-inspired silicification on patterned surfaces generated by microcontact printing and layer-by-layer self-assembly.
Micropatterns of silica were generated under biocompatible conditions by a combination of microcontact printing (muCP), layer-by-layer (LbL) self-assembly, and biomimetic silicification. Quaternary amine-containing poly(diallyl dimethyl ammonium chloride) induced polycondensation of silicic acid, resulting in spatioselective formation of silica micropatterns. Scale bar: 10 microm.
متن کامل